
MVM Journal of Research Volume 4 Jan.-Dec., 2018

ISSN 2395-2962 www.mvmjournal.org Page 1

REVIEW ON TYPES OF CROSS-SITE-SCRIPTING ATTACKS

OVER INTERNET

Yogapriya, R1 and Subramani, A (Dr)2

1Research Scholar, 2Assistant Professor

Dept. of Computer Science,

M.V.Muthiah Govt. Arts College for Women,

Dindigul, Tamilnadu, India - 624005.

Abstract

Cross-site scripting attack is one of the most popular types of threat in web based

applications. Recently, the web applications are becoming one of the standard platforms for

representing data and their service over the Internet. Since the web applications are

progressively utilized for security and services. Cross-site scripting (XSS) occurred by

injecting the malicious scripts into web application, and it can lead to significant violations

at the website. XSS attacks are the malicious scripts, which are embedded by attackers into

the source code of webpage to be executed at client side by browsers. This paper presents

vulnerabilities of XSS attack found in the modern web applications.

Keywords: Cross-site scripting; XSS, Attacks; Threats; Vulnerability; Web Application;

Internet

I. Introduction

Attackers are constantly working with techniques to obtain sensitive data through the

web applications. Applications that are vulnerable to malicious users can break the security

and protection mechanism of the system by gaining access to personal information or taking

control over system resources. It has been around since the 1990s and cross-site scripting

flaws at some point have affected all most major websites like Google, Yahoo and Facebook

[1]. XSS is amongst the most widespread of web application vulnerabilities and occurs when

a web application makes use of invalidated or un-encoded user input within the output it

generates. An attacker does not attack the victim directly, instead of that an attacker would

exploit vulnerability within a website that the victim would visit essentially using the

vulnerable website as a vehicle to deliver a malicious script to the victim’s browser. While

XSS has taken advantage of VBScript, ActiveX and Flash (although now considered legacy

or even obsolete), unquestionably, the most widely abused is JavaScript primarily it is

essential to most browsing experiences.

The purpose of this attack is to get access the personal information and system resource,

which may cause damage to assets of individuals and the organizations, which has its

existence over the web with exposure of being attacked. Depending upon various factors the

level of risk varies among the reported vulnerabilities, Open Web Application Security

Project (OWASP) has ranked XSS second most dangerous vulnerability among top ten

vulnerabilities. The first attack of XSS was reported in early 90’s. Currently XSS holds a

MVM Journal of Research Volume 4 Jan.-Dec., 2018

ISSN 2395-2962 www.mvmjournal.org Page 2

share of 43% among all the reported vulnerabilities [2]. Browser interprets and displays

HTML Pages, Java scripts, AJAX and other content hosted on web server. The content, that

hosted by web server may be malicious with the intention to target users. The common ways

of how the attackers target users through browser as shown in Figure 1. Cookie and Session

stealing, browser hijacking, buffer overflow, drive by download and a variety of other ways

through which sensitive information maintained by the browser is stolen or access to

resource is denied.

Figure 1: XSS Attacks

II. Literature Review

An application, that is exposed to input validation vulnerabilities, if an attacker finds that

the application makes untested assumptions about the type, duration, format, or scope of

input data. When inputs are not properly sanitized, attackers are ready to introduce

maliciously crafted inputs, which might alter program performances or allow unauthorized

access to resources. Improper input validation may invite a range of attacks, like buffer

overflow attacks, SQL injection attacks, cross-site scripting, and other code injection attacks

[20].

SQL injection attack is the insertion of SQL query through the input data from the client

to the application. A successful SQL injection exploit can read and modify sensitive data

from the database, implement administrative privileges on the database, and in some cases

issue commands to the operating system [21]. SQL injection attacks are a type of injection

attack, in which SQL commands are injected into the data-plane input in order to affect the

execution of predefined SQL commands [22].

Session management that enables a web application to keep track of user inputs and

maintain application status. In web application development, the session management is

accomplished through the co-operation between the client and server. Since session ID is

the only proof of the client’s identity, its confidentiality, integrity, and authenticity need to

be ensured to avoid session hijacking [23]. Vulnerabilities, which are specific to session

management are great threats to any web application and are also among the most

challenging ones to find and fix. The Sessions are targets for attackers because they can be

used to gain access to a system without having to authenticate.

MVM Journal of Research Volume 4 Jan.-Dec., 2018

ISSN 2395-2962 www.mvmjournal.org Page 3

In [24], researchers has defined two various methodologies for recognition of cross site

vulnerability and deterrence of cross site attack depends on conversion of web operations.

Initial stage translates the web functional program structures is completed which currently

refined examination methodologies be accessible for that words. It suitably implement the

function structure by counting scrutinizes depends on input and output reliabilities obtained

by preliminary stage. Utilization of vulnerabilities is restrained by controlling dynamically.

In [25], researchers have surveyed the XSS attack and found that most recent attack on

existing websites is DOM based. The attack can harm the millions of people in few seconds

as it exploits the vulnerabilities through submission method HTTP GET and HTTP POST.

To prevent from this type of attack, a methodology of two way detector and filter is

developed which identifies any suspicious URL submitted or stored in database of website

and report to filter which is programmed to sanitize the data.

Table 1: State-of-Art Techniques in XSS

Techniques Deployment Advantages Limitations

Noxes a client-side

solution for

mitigating Cross-

Site Scripting

attacks [11].

Web-

browser

It support such a

mitigate practice of

XSS attack that

considerably diminishes

the amount of

connection alert

prompts and providing

the defense against XSS

attacks.

Also this tool suffers

from low reliability and

prohibits the inclusion

of benign HTML.

SecuBat a web

vulnerability

scanner [12].

Web-server The main goal of this

scanner is to determine

and exploit application-

level vulnerabilities in a

large number of real

time web sites without

human intervention.

The authors have tested

this vulnerability

scanner on more than

25,000 live web pages.

But no ground truth is

presented for these web

sites.

Session Safe

implementing XSS

immune session

handling [13].

Web-server A server-side

translucent tool does not

require any

modifications in the

source code of web

applications and shield

against XSS attacks.

Such methods need

several, highly

structured server

domains that may be

awkward to handle.

Also, they can offer

only restricted security

such as prohibiting

access to the sensitive

resources of a web

MVM Journal of Research Volume 4 Jan.-Dec., 2018

ISSN 2395-2962 www.mvmjournal.org Page 4

application like

cookies.

XSSDS a server-

side detection of

Cross-Site

Scripting attacks

[14].

Web-server It has fine capability to

discover XSS attacks by

measuring the deviation

between the HTTP web

request and it is

associated HTTP

response.

The method of

discovering persistent

XSS attack suffers from

few false positives and

requires a more

advanced training phase

for the collection of

more scripts.

XSS-GUARD

precise dynamic

prevention of

Cross-Site

Scripting attacks

[15].

Web-server Its main strength is that

it can evade Illicit script

data from being a part of

The HTTP response

webpage.

While this technique

attempt to sanitize

unsafe output, it still

influence web browser

parsers to infer unsafe

HTML data and are

vulnerable to threats

that utilizes browser

parse quirks.

BLUEPRINT

robust prevention

of Cross-Site

Scripting attacks

for existing

browsers [16].

Web-server

/ web-

browser

Blue print demonstrates

the method to guarantee

the safe construction of

the intended HTML

parse tree on the web

browser .This approach

provides security

against malicious script

injections and facilitates

the support for script

less for script-less

HTML content.

Unfortunately, this

technique requires

modification both at the

client as well as server

side. Also the authors

had not proposed any

idea of handling the

unsafe HTML content

at the server-side.

SWAP mitigating

XSS attacks using

a reverse proxy

[17].

Web-proxy /

web server

It has a fine capability

of detecting the

deviation between

benign and injected

JavaScript code.

Many categories of

XSS attacks cannot be

detected by this

technique.

Injecting

comments to

detect JavaScript

code injection

attacks [18].

Web-server Their strength relies on

discovering the XSS

attacks by inserting the

comment statements

consisting of random

It has been observed

that their proposed

technique discovers a

part of code injection

attack.

MVM Journal of Research Volume 4 Jan.-Dec., 2018

ISSN 2395-2962 www.mvmjournal.org Page 5

 generated tokens and

characteristics of being

JavaScript code.

Noncespaces

using

randomization to

enforce

information flow

tracking and thwart

Cross-Site

Scripting attacks

[19].

Web-

browser /

web-server

Evade all the troubles

and obscurity occurs

with sanitization

Does not provide any

defensive mechanism

regarding inserted

JavaScript code

downloaded from

remote web site.

III. XSS Vulnerability

Moreover the attackers, target end users by encoding the URL and hiding the parameters

also use URL’s. The types of XSS are, Persistent XSS, Non-persistent XSS and Dom based

XSS.

 The Persistent XSS attack is the very powerful attack that can be spread to millions

of people at the same time. A malicious script is injected into web application and it

is permanently stored on the server. When a user requests to provide information

from server, then the injected script send an error message reflected by server.

 Reflected XSS attacks, also known as non-persistent attacks, is the common type of

XSS attacks. The attacked code is not persistently stored; instead, it is immediately

reflected back to the user. It is also known as reflected XSS attack. In this, the

injected code is sent back to the user victim off the server, such as in an error

message, search result, or any other response that includes the input which sent to

the server as part of the request.

 This attack is typically delivered via emails, social networking sites and malicious

links on the website. Then the script is activated through a link, which sends a request

to a website with a vulnerability that enables execution of malicious scripts. The

vulnerability is typically a result of incoming requests not being sufficiently

sanitized, which allows for the manipulation of a web application’s functions and the

activation of malicious scripts. The link is embedded inside the text that provokes

the user to clicking on it, which initiates the XSS request to an exploited website,

reflecting the attack back to the user.

 DOM (Document Object Model) is a client side injection. Entire code is originated

from the server that means it is developer’s responsibility to make a safe web

application. A DOM-based XSS attack is triggered on the client side. All XSS attacks

MVM Journal of Research Volume 4 Jan.-Dec., 2018

ISSN 2395-2962 www.mvmjournal.org Page 6

are executed at the browser. DOM allows dynamic scripts, including JavaScript, to

reference the document’s components. For example, a session cookie or a form field

[4].

Figure 2: Attack Types

IV. XSS Approach

Despite number of techniques for mitigating XSS have been proposed at either client

side or server side, it remains a threat to users. Thus an efficient approach to mitigate XSS

is demanded. Kidra at al proposes Noxes, which they claim the first client side web proxy

for mitigating XSS that relays all the HTTP requests from browser and serves as an

application level firewall. Noxes supports XSS to mitigation mode that significantly reduces

the number of connection alert prompts while at the same time that providing the protection

against XSS attacks, where the attackers may target sensitive information such as cookies

and session IDs. The main imitation of Noxes it demands user customized configuration and

user interaction during any suspicious even.

Voget et al proposed a technique, which is a combination of static and dynamic analysis

for mitigating XSS which aim to identify the information leakage using tainting of input

data in the browser. The problem with this technique is that it does not mitigate the damage

caused by other types of XSS attacks such as port scanning, web page defacement and

browser resource consumption [7][8][9]. In order of an XSS attack to take place the

vulnerable website needs to directly include the user input in its pages. Then an attacker can

insert a string that will be used within the web page and treated as code by the victim’s

browser. The following server-side pseudo-code is used to display the most recent comment

on a web page.

print"<html>"

print"<h1>Most recent comment</h1>"

MVM Journal of Research Volume 4 Jan.-Dec., 2018

ISSN 2395-2962 www.mvmjournal.org Page 7

printdatabase.latestComment

 print"</html>"

This script given above is simply print out the latest comment from a database and

printing the contents out in an HTML page, that assuming the comment printed out, it

consists of only text. The above page is vulnerable to XSS, because an attacker could submit

a comment which contains a malicious payload such as

<script>doSomethingEvil();</script>.

Users who are visiting the web page will get served the following HTML page.

<html>

<h1>Most recent comment</h1>

<script>doSomethingEvil();</script>

</html>

When the page loads in the victim’s browser, the attacker’s malicious script will

execute, most often without the user realizing or being able to prevent such an attack.

Client Side Prevention

The main disadvantage is that it requires client actions whenever a connection violates

the filter rules. This approach addresses all types of XSS attacks. It only detects the send

user information to a third-party server, not any other exploit such as those involving Web

content manipulation. Noxes, acts as a private firewall, it allows or blocks connections to

websites on the basis of filter rules, which are basically user-specified URL white lists and

blacklists. The browser sends an HTTP request to an anonymous website then Noxes

immediately alerts the client, who chooses to allow or deny the connection, and remembers

the client‟s action for prospect use. The Client-side prevention provides a personal

protection layer for clients, so that they need not depend on the security of Web applications

[4][5][6].

Server Side Prevention

Users of internet specify the prerequisites of sensitive functions i.e. it contain HTML

outputs and post conditions of sanitization functions. During the runtime, instrumented

guards ensure for conformance of these user-specified conditions. The Web SSARI (Web

Security via Static Analysis and Runtime Inspection) tool, which executes the type based

static analysis to identify potentially weak code sections and implement them with runtime

guards. The Other approaches use dynamic taint-tracking mechanisms to monitor the stream

of input data at runtime. They ensure that the inputs are syntactically restricted (only treated

as literal values) and do not hold unsafe content defined in user-specified security policies.

Some of the server side prevention mechanisms require the collaboration of browsers. An

example is BEEP (Browser-Enforced Embedded Policies), a mechanism that modifies the

browser, so that it cannot execute unlawful scripts. Security policies that dictate what data

the server sends to BEEP-enabled-browsers [5][6].

MVM Journal of Research Volume 4 Jan.-Dec., 2018

ISSN 2395-2962 www.mvmjournal.org Page 8

Runtime Attack Prevention

In general, these methods set up a proxy between the client and the server to capture

incoming or outgoing HTTP traffic. Then the proxy checks the HTTP data for illegal scripts

or verifies the resulting URL connections against safety policies. XSS defenses focus on

preventing the real time attacks using intrusion detection systems or runtime monitors,

which can be deployed on either the server side or client side [4][5].

V. Role of Worst Attacker with JavaScript

The consequences of an attacker can do with the ability to execute JavaScript on a

web that may not immediately stand out, especially since browsers run JavaScript in a very

tightly controlled environment and that JavaScript has limited access to the user’s operating

system and the user’s files. However, when considering that JavaScript has access to the

following, it’s easier to understand how creative attackers can get with JavaScript.

 Malicious JavaScript has access to all the same objects the rest of the web page has,

including access to cookies. Cookies are often used to store session tokens, if an

attacker can obtain a user’s session cookie, they can impersonate that user.

 JavaScript can read and make arbitrary modifications to the browser’s DOM (within

the page that JavaScript is running).

 JavaScript can use XMLHttpRequest to send HTTP requests with arbitrary content

to arbitrary destinations.

 JavaScript in modern browsers can leverage HTML5 APIs such as accessing a user’s

geolocation, webcam, microphone and even the specific files from the user’s file

system. While most of the APIs require the user opt-in, XSS in conjunction with

some clever social engineering can bring an attacker a long way.

In the above, the combination with social engineering, allow attackers to pull off

advanced attacks including cookie theft, keylogging, phishing and identity theft. Critically,

the XSS vulnerabilities provide the perfect ground for attackers to escalate attacks to more

serious ones [1][3].

A cookie, also known as a web cookie, browser cookie, and HTTP cookie, is a text string

stored by a user's web browser. A cookie consists of the bits of information, which may be

encrypted for information privacy and data security purposes. The cookie is sent as a HTTP

header by the web server to web browser and then sent back unchanged by the browser.

Each time it accesses that server. A cookie can be used for the authentication, session

tracking (state maintenance), storing site preferences, shopping cart contents, the identifier

for a server-based session, or anything else that can be accomplished through storing textual

data. A Cookie is not executable, because they are not executed and they cannot replicate

themselves and are not viruses. However, due to the browser mechanism, to set and read

cookies, they can be used as a Spyware. Anti-spyware products may warn users about some

MVM Journal of Research Volume 4 Jan.-Dec., 2018

ISSN 2395-2962 www.mvmjournal.org Page 9

cookies because cookies can be used to track the people. Many web applications rely on

session cookies for authentication between individual HTTP requests because client-side

scripts generally have access to these cookies, simple XSS exploits can steal these cookies.

For instance Cookie Grabber.

If the application doesn't validate the input data, the attacker can easily steal a cookie

from an authenticated user. All the attacker has to do is to place the following code in any

posted input (i.e. message boards, private messages, user profiles)

<SCRIPT type="text/javascript">

varadr = '../evil.php?cakemonster=' + escape(document.cookie);

</SCRIPT>

The above code will pass an escaped content of the cookie (according to RFC content

must be escaped before sending it via HTTP protocol with GET method) to the evil.php

script in “cakemonster” variable. The attacker then checks the results of his evil.php script

(a cookie grabber script will usually write the cookie to a file) and use it [1].

VI. Conclusion

In this paper, we have focused on a specific case of attack against web applications. We

have seen how the existence of cross-site scripting (XSS for short) vulnerabilities on a web

application can involve a great risk for both the application itself and its users. We have also

surveyed existing approaches for the prevention of XSS attacks on vulnerable applications,

discussing their benefits and drawbacks. Whether it dealing with persistent or non-persistent

XSS attacks, there are currently very interesting solutions which provide the interesting

approaches to solve the problem. But these solutions present some failures, some do not

provide enough security and can be easily bypassed, others are so complex that become

impractical in real situation.

References

[1] Learn The Difference Between Injection And Cross-Site Scripting Attacks!, retrieved

from

https://www.securitycommunity.tcs.com/infosecsoapbox/articles/2018/02/13/learn-

difference-between-injection-and-cross-site-scripting-attacks

[2] Cross-site Scripting (XSS), retrieved from, https://www.owasp.org/index.php/Cross-

site_Scripting_(XSS)

[3] Cross-site Scripting (XSS) , retrieved from,

https://www.acunetix.com/websitesecurity/cross-site-scripting/

[4] Shivani Singh1 and Bhawna Kumari2, “Preventing cross-site scripting attacks on the

client side” Scholars Research Library Archives of Applied Science Research, 2015,

7 (2):9-14.

MVM Journal of Research Volume 4 Jan.-Dec., 2018

ISSN 2395-2962 www.mvmjournal.org Page 10

[5] Nayeem Khan, Johari Abdullah, Adnan Shahid Khan, “Towards Vulnerability

Prevention Model for Web Browser using Interceptor Approach”, CITA), 2015 9th

International Conference on IT in Asia, At Kuching, Sarawak, Malaysia.

[6] AbdallaWasefMarashdih and ZarulFitriZaaba, “Cross Site Scripting: Detection

Approaches in Web Application”, (IJACSA) International Journal of Advanced

Computer Science and Applications, Vol. 7, No. 10, 2016, p.no.155.

[7] Michelle E Ruse, SamikBasu, ”Detecting Cross-Site Scripting Vulnerability using

Concolic Testing”, IEEE, 2013 10th International Conference on Information

Technology: New Generations.

[8] Shashank Gupta, B. B. Gupta, “XSS-SAFE: A Server-Side Approach to Detect and

Mitigate Cross-Site Scripting (XSS) Attacks in JavaScript Code”, Research Article -

Computer Engineering and Computer Science, 6 October 2015.

[9] Shashank Gupta, Lalitsen Sharma, “ Exploitation of Cross-Site Scripting (XSS)

Vulnerability on Real World Web Applications and its Defense”,International Journal

of Computer Applications (0975 – 8887) Volume 60– No.14, December 2012.

[10] R.Yogapriya, A. Subramani, “A Survey on Vulnerabilities, Attacks and Issues in

MANET, WSN and VANET”,IJCSE International Journal of Computer Sciences and

Engineering,Vol.-6, Issue-11, Nov 2018.

[11] Engin Kirda, Christopher Kruegel, Giovanni Vigna, Nenad Jovanovic Noxes: a client-

side solution for mitigating cross-site scripting attacks, SAC 06 Proceedings of the

2006 ACM symposium on Applied computing. Pages 330-337.

[12] Stefan Kals, Engin Kirda, Christopher Kruegel and Nenad Jovanovic, SecuBat: A Web

Vulnerability Scanner , WWW 06 Proceedings of the 15th international conference on

World Wide Web, Pages 247-256.

[13] Martin Johns, SessionSafe: Implementing XSS Immune Session Handling, ESORICS

06 Proceedings of the 11th European conference on Research in Computer Security,

Pages 444-460.

[14] Martin Johns, Björn Engelmann and Joachim Posegga, XSSDS: Server-Side Detection

of Cross-Site Scripting Attacks, 24th Annual Computer Security Applications

Conference, ACSAC 2008, Anaheim, California, USA, 8-12 December 2008, Pages

335-340.

[15] Prithvi Pal Singh Bisht and V. N. Venkatakrishnan, XSS-GUARD: Precise Dynamic

Prevention of Cross-Site Scripting Attacks, Lecture Notes in Computer Science book

series (LNCS, volume 5137), pp 23-43.

[16] Mike Ter Louw and V. N. Venkatakrishnan, Blueprint: Robust Prevention of Cross-

site Scripting Attacks for Existing Browsers SP 09 Proceedings of the 2009 30th IEEE

Symposium on Security and Privacy, Pages 331-346.

[17] Peter Wurzinger, Christian Platzer, Christian Ludl and Engin Kirda, SWAP:

Mitigating XSS attacks using a reverse proxy, ICSE 09, 31st International Conference

on Software Engineering, IEEE Computer Society, May 16-24, 2009, Vancouver,

Canada.

MVM Journal of Research Volume 4 Jan.-Dec., 2018

ISSN 2395-2962 www.mvmjournal.org Page 11

[18] Hossain Shahriar and Mohammad Zulkernine, Injecting Comments to Detect

JavaScript Code Injection Attacks, COMPSACW 11 Proceedings of the 2011 IEEE

35th Annual Computer Software and Applications Conference Workshops, Pages 104-

109.

[19] Matthew Van Gundy and Hao Chen, Noncespaces: Using Randomization to Enforce

Information Flow Tracking and Thwart Cross-Site Scripting Attacks, Proceedings of

the Network and Distributed System Security Symposium, NDSS 2009, San Diego,

California, USA, 8th February - 11th February 2009.

[20] D. Vandana, Y. Himanshu, and J. Anurag, “A survey on web application

vulnerabilities,” International Journal of Computer Applications, vol. 108, no. 1, pp.

25–31, 2014.

[21] S. Priti, T. Kirthika, S. Pooja, and S. Bushra, “Detection of SQL injection and XSS

vulnerability in web application,” International Journal of Engineering and Applied

Sciences (IJEAS), vol. 2, no. 3, 2015.

[22] S. Hossain and H. Hisham, “Fuzzy rule-based vulnerability assessment framework for

web applications,” International Journal of Secure Software Engineering, vol. 7, no.

2, pp. 145–160, 2016.

[23] B. Animesh and M. Debasish, “Genetic algorithm based hybrid fuzzy system for

assessing morningness,” Advances in Fuzzy Systems, vol. 2014, Article ID 732831, 9

pages, 2014.

[24] M.E Ruse, S. Basu, “Detecting Cross-Site Scripting Vulnerability Using Concolic

Testing”, Information Technology: New Generations, Tenth International Conference

IEEE, USA, pp 633-638, 2013.

[25] Singh, A. and Sthappan,S. , A survey on XSS web-attack and Defence Mechanisms,

International Journal of Advanced Research in Computer Science and Software

Engineering (IJARCSSE), Volume 4, Issue 3, 2014. ISSN: 2277 128X.

